

1	Characterization of gas-phase organics using proton transfer
2	reaction time-of-flight mass spectrometry: fresh and aged
3	residential wood combustion emissions
4	Emily A. Bruns ^a *, Jay G. Slowik ^a , Imad El Haddad ^a , Dogushan Kilic ^a , Felix Klein ^a , Josef
5	Dommen ^a , Brice Temime-Roussel ^b , Nicolas Marchand ^b , Urs Baltensperger ^a and André S. H.
6	Prévôt ^a *
7	^a Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
8	^b Aix Marseille Université, CNRS, LCE UMR 7376, 13331, Marseille, France
9	*Correspondence to: E. A. Bruns (emily.bruns@psi.ch) or A. S. H. Prévôt
10	(andre.prevot@psi.ch)
11	
12	
13	August 21, 2016
14	
15	For submission to Atmospheric Chemistry and Physics

16 Abstract

17	Organic gases emitted during the flaming phase of residential wood combustion are
18	characterized individually and by functionality using proton transfer reaction time-of-flight mass
19	spectrometry. The evolution of the organic gases is monitored during photochemical aging.
20	Primary gaseous emissions are dominated by oxygenated species (e.g., acetic acid, acetaldehyde,
21	phenol and methanol), many of which have deleterious health effects and play an important role
22	in atmospheric processes such as secondary organic aerosol formation and ozone production.
23	Residential wood combustion emissions differ considerably from open biomass burning in both
24	absolute magnitude and relative composition. Ratios of acetonitrile, a potential biomass burning
25	marker, to CO are considerably lower (~0.09 pptv ppbv ⁻¹) than those observed in air masses
26	influenced by open burning (~1-2 pptv ppbv ⁻¹), which may make differentiation from
27	background levels difficult, even in regions heavily impacted by residential wood burning.
28	Considerable formic acid forms during aging (~200-600 mg kg ⁻¹ at an OH exposure of (4.5-
29	5.5)×10 ⁷ molec cm ⁻³ h), indicating residential wood combustion can be an important local source
30	for this acid, the quantities of which are currently underestimated in models. Phthalic anhydride,
31	a naphthalene oxidation product, is also formed in considerable quantities with aging (~55-75 mg
32	kg ⁻¹ at an OH exposure of $(4.5-5.5) \times 10^7$ molec cm ⁻³ h). Although total NMOG emissions vary
33	by up to a factor of ~9 between burns, SOA formation potential does not scale with total NMOG
34	emissions and is similar in all experiments. This study is the first thorough characterization of
35	both primary and aged organic gases from residential wood combustion and provides a
36	benchmark for comparison of emissions generated under different burn parameters.

37 1 Introduction

38	Residential wood combustion is a source of gaseous and particulate emissions in the atmosphere,
39	including a complex mixture of non-methane organic gases (NMOGs) (McDonald et al., 2000;
40	Schauer et al., 2001; Hedberg et al., 2002; Jordan and Seen, 2005; Pettersson et al., 2011;
41	Evtyugina et al., 2014; Reda et al., 2015). NMOGs impact climate (Stocker et al., 2013) and
42	health (Pouli et al., 2003; Bølling et al., 2009) both directly and through the formation of
43	products during atmospheric processing (Mason et al., 2001; Kroll and Seinfeld, 2008; Shao et
44	al., 2009), which makes NMOG characterization critical. Although two studies have speciated a
45	large fraction of the NMOG mass emitted during residential wood combustion (McDonald et al.,
46	2000; Schauer et al., 2001), these studies relied on offline chromatographic approaches, which
47	are time consuming in terms of sample preparation and analysis and can introduce both positive
48	and negative artifacts (Nozière et al., 2015). Relatively recently, the proton transfer reaction
49	mass spectrometer (PTR-MS) has emerged as a powerful tool for online quantification of
50	atmospherically-relevant NMOGs (Lindinger et al., 1998; Jordan et al., 2009) eliminating many
51	of the artifacts associated with offline approaches. NMOGs emitted during open burning of a
52	variety of biomass fuels in the laboratory have been recently quantified using a high resolution
53	proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) (Stockwell et al., 2015)
54	and select nominal masses were followed during aging of residential wood combustion emissions
55	using a quadrupole PTR-MS (Grieshop et al., 2009a). However, a complete high-resolution
56	characterization of residential wood combustion emissions has yet to be performed.
57	The quantities and composition of NMOGs emitted during residential wood combustion are

- 58 highly dependent on a number of parameters including wood type, appliance type and burn
- 59 conditions, and as few studies have characterized these NMOGs (McDonald et al., 2000; Schauer

- 60 et al., 2001; Hedberg et al., 2002; Jordan and Seen, 2005; Pettersson et al., 2011; Evtyugina et
- al., 2014; Reda et al., 2015), further work is needed to constrain emission factors, as highlighted
- 62 in the recent review article by Nozière et al. (2015). Also, little is known about the evolution of
- 63 NMOGs from residential wood combustion with aging.
- 64 In this study, we present results from the first use of a smog chamber and a PTR-ToF-MS to
- 65 characterize primary and aged gaseous emissions from residential wood combustion in real-time.
- 66 This novel approach allows for an improved characterization of NMOG emissions, particularly
- 67 oxygenated NMOGs, which are a considerable fraction of the total NMOG mass emitted during
- residential wood combustion (McDonald et al., 2000; Schauer et al., 2001). This study focuses
- on a narrow set of burn conditions, namely the flaming phase of beech wood combustion, in
- 70 order to generate as reproducible emissions as possible for a complementary investigation of the
- 71 effects of parameters such as temperature on the emissions. While these experiments are a
- 72 narrow representation of real-world conditions, this novel work provides a benchmark and
- 73 direction for future wood combustion studies.

74 2 Methods

75 2.1 Emission generation and smog chamber operation

Beech (*Fagus sylvatica*) logs are combusted in a residential wood burner (Avant, 2009, Attika) and emissions are sampled from the chimney through a heated line (473 K), diluted by a factor of \sim 8-10 using an ejector diluter (473 K, DI-1000, Dekati Ltd.) and injected into the smog chamber (\sim 7 m³) through a heated line (423 K). Emissions are sampled during the stable flaming phase of the burn and modified combustion efficiencies (MCEs), defined as the ratio between CO₂ and the sum of CO and CO₂, range from 0.974-0.978 (Table 1).

82 Emissions are injected for 11-21 min and total dilution factors range from ~100-200. All 83 experiments are conducted under similar conditions with starting wood masses in the burner of 84 2.9 ± 0.3 kg and a wood moisture content of $19\pm2\%$. The smog chamber has an average 85 temperature of 287.0 ± 0.1 K and a relative humidity of $55\pm3\%$ over all five experiments. After 86 characterization of the primary emissions, as described below, a single dose of d9-butanol (2 μ l, 87 butanol-D9, 98%, Cambridge Isotope Laboratories) is injected into the chamber and a continuous injection of nitrous acid in air $(2.3-2.61 \text{ min}^{-1}, \ge 99.999\%)$, Air Liquide) into the chamber begins. 88 89 The decay of d9-butanol measured throughout aging is used to estimate hydroxyl radical (OH) 90 exposures (Barmet et al., 2012). Nitrous acid produces OH upon irradiation in the chamber and 91 is used to increase the degree of aging. Levels of NO_x in the chamber prior to aging range from 92 ~150-350 ppb. The small continuous dilution in the chamber during aging due to the constant 93 nitrous acid injection is accounted for using CO as an inert tracer. The chamber contents are irradiated with UV light (40 lights, 90-100 W, Cleo Performance, Philips) for 4.5-6 h (maximum 94 95 OH exposures of $(4.7-6.8) \times 10^7$ molec cm⁻³ h which corresponds to ~2-3 days of aging in the atmosphere at an OH concentration of 1×10^6 molec cm⁻³). Reported quantities of aged species 96 are taken at OH exposures of $(4.5-5.5) \times 10^7$ (Table 1; ~1.9-2.3 days of aging in the atmosphere at 97 an OH concentration of 1×10^6 molec cm⁻³) (Barmet et al., 2012). 98

99 2.2 Gas-phase analysis

100 NMOGs with a proton affinity greater than that of water are measured using a PTR-ToF-MS

101 (PTR-ToF-MS 8000, Ionicon Analytik GmbH) and CO₂, CO and CH₄ are measured using cavity

102 ring-down spectroscopy (G2401, Picarro, Inc.). The PTR-ToF-MS operates with hydronium ion

- 103 $([H_2O+H]^+)$ as the reagent, a drift tube pressure of 2.2 mbar, a drift tube voltage of 543 V and a
- 104 drift tube temperature of 90°C leading to a ratio of the electric field (E) and the density of the

- buffer gas (N) in the drift tube (reduced electric field, E/N) of 137 Townsend (Td). The
- 106 transmission function is determined using a gas standard of six NMOGs of known concentration
- 107 (methanol, acetaldehyde, propan-2-one, toluene, *p*-xylene, 1,3,5-trimethylbenzene; Carbagas).
- 108 As the RH and temperature of the sampled air is similar in all experiments, changes in the
- 109 detection efficiency of individual species are not expected.
- 110 PTR-ToF-MS data are analyzed using the Tofware post-processing software (version 2.4.5,
- 111 TOFWERK AG, Thun, Switzerland; PTR module as distributed by Ionicon Analytik GmbH),
- 112 running in the Igor Pro 6.3 environment (version 6.3, Wavemetrics Inc.). The minimum
- 113 detection limit is taken as three standard deviations above the background, where the standard
- 114 deviation is determined from the measurements of each ion in the chamber prior to emission
- 115 injection. Isotopic contributions are constrained during peak fitting and are accounted for in
- 116 reported concentrations. Possible molecular formulas increase with increasing m/z, making
- 117 accurate peak assignments difficult in the higher m/z range. Mass spectral data from m/z 33 to
- 118 m/z 130 are assigned molecular formulas, as well as the ¹⁸O isotope of the reagent ion and signal
- above m/z 130 corresponding to compounds previously identified during residential wood
- 120 combustion (McDonald et al., 2000; Schauer et al., 2001; Hedberg et al., 2002; Jordan and Seen,
- 121 2005; Pettersson et al., 2011; Evtyugina et al., 2014; Reda et al., 2015). All signal above *m/z* 130
- 122 is included in total NMOG mass quantification. Using this approach, ~94-97% of the total
- 123 NMOG mass measured using the PTR-ToF-MS has an ion assignment.

The reaction rate constant of each species with the reagent ion in the drift tube is needed to convert raw signal to concentration. When available, individual reaction rate constants are applied to ions assigned a structure (Cappellin et al., 2012) (Table S1), otherwise a default reaction rate constant of 2×10^{-9} cm³ s⁻¹ is applied. For possible isomers, the reaction rate

128	constant is taken as the average of available values. Approximately 60-70% of the total NMOG
129	mass is comprised of compounds with known rate constants. NMOG signal is normalized to
130	$[H_2^{18}O+H]^+$ to convert to concentration. Emission factors (EFs) normalize concentrations to the
131	total wood mass burned (e.g., mg kg ⁻¹ reads as mg of species emitted per kg wood burned) to
132	facilitate comparison between experiments and are calculated as described previously (Andreae
133	and Merlet, 2001; Bruns et al., 2015a).
134	PTR-ToF mass spectrometry is a relatively soft ionization technique generally resulting in
135	protonation of the parent NMOG ($[M+H]^+$), although some compounds are known to produce
136	other ions, for example through fragmentation or rearrangement (e.g., Baasandorj et al. (2015)).
137	Reactions potentially leading to considerable formation of species besides $[M+H]^+$ are discussed
138	in the Supplement. The extent to which reactions leading to ions other than $\left[M+H\right]^+$ occurs is
139	dependent on instrument parameters such as E/N . The unknown relative contributions of various
140	isomers makes it difficult to account for reactions generating ions besides $\left[M+H\right]^+$ and thus, no
141	fragmentation corrections are applied. Emission factors of compounds likely to undergo
142	extensive reaction to form products besides $[M+H]^+$ (i.e., methylcyclohexane (Midey et al.,
143	2003), ethyl acetate (Baasandorj et al., 2015) and saturated aliphatic aldehydes (Buhr et al.,
144	2002), with the exception of acetaldehyde) are not reported. Due to interferences, butenes
145	$([C_4H_8+H]^+)$ are not quantified.

146

3 Results and Discussion

147 **3.1 NMOG emissions**

In all experiments, the largest EFs for a single gas-phase species correspond to CO_2 (1770-1790 g kg⁻¹) and CO (27-30 g kg⁻¹) (Table 2), which are in good agreement with previous

- 150 measurements from residential beech logwood combustion where CO_2 EFs of ~1800 g kg⁻¹ and
- 151 CO EFs of ~20-70 g kg⁻¹ were measured (Ozil et al., 2009; Schmidl et al., 2011; Kistler et al.,
- 152 2012; Evtyugina et al., 2014; Reda et al., 2015). Methane is also emitted in considerable
- 153 quantities (1.5-2.8 g kg⁻¹), similar to previously observed values for beech wood burning in
- 154 fireplaces (0.5-1 g kg⁻¹ (Ozil et al., 2009), however, at generally lower levels than total NMOGs
- 155 (1.5-13 g kg⁻¹). Total NMOG EFs from beech wood combustion have not been previously
- 156 reported, but values are similar to studies of residential wood stove burning of different
- 157 hardwoods which have attempted a detailed quantification of total NMOGs, such as McDonald
- 158 et al. (2000) (6.2-55.3 g kg⁻¹ for a hardwood mixture) and Schauer et al. (2001) (6.7 g kg⁻¹ for
- 159 oak). Total NMOG quantities reported in this study refer to species quantified using the PTR-
- 160 ToF-MS.
- 161 Although a large fraction of atmospherically-relevant organic gases are measured using the PTR-
- 162 ToF-MS, some species are not quantitatively detected, including those with a proton affinity less
- 163 than water (i.e., small alkanes). Based on previous studies of residential burning, alkanes are
- 164 estimated to contribute less than ~5% to the NMOG mass of either hard or softwood and the sum
- 165 of alkenes and alkynes, some of which are quantifiable with the PTR-ToF-MS, are estimated to
- 166 contribute less than ~15% to the total measured NMOG mass (McDonald et al., 2000; Schauer et
- 167 al., 2001).
- 168 Figure 1 shows the primary NMOG mass spectrum for each experiment classified by NMOG
- 169 functionality and the fractional contribution of NMOG functional groups to the total NMOG
- 170 mass. EFs for individual compounds are presented in Table 2. For ease of reading, nominal m/zs
- 171 are presented in the text and figures, however, monoisotopic m/zs for all identified species can be
- 172 found in Tables 2 and S2. Separation of isobaric species is possible using the PTR-ToF-MS,

- 173 however, isomers remain indistinguishable. Quantities of gas-phase species generated during
- 174 residential wood combustion depend on a variety of parameters, such as type of burner and wood
- 175 species. However, many compounds are commonly emitted and structures are assigned to
- 176 observed ions based on previously identified species (McDonald et al., 2000; Schauer et al.,
- 177 2001; Hedberg et al., 2002; Jordan and Seen, 2005; Pettersson et al., 2011; Evtyugina et al.,
- 178 2014; Reda et al., 2015). A few small, unambiguous ions are also assigned a structure, including
- 179 methanol, formic acid and acetonitrile. Approximately 70% of the total NMOG mass measured
- 180 using the PTR-ToF-MS is assigned a structure based on this method.
- 181 NMOGs are categorized by functional groups including: oxygenated, total C_xH_y, nitrogen-
- 182 containing and other. Oxygenated subcategories include: acids (comprised of non-aromatic
- acids), carbonyls (comprised of non-aromatic carbonyls), oxygenated aromatics (not including
- 184 furans), furans, O-containing (comprised of structurally unassigned oxygenated compounds and
- 185 multifunctional oxygenated compounds) and O- and N-containing (comprised of species
- 186 containing both oxygen and nitrogen atoms). Species categorized as N-containing contain no
- 187 oxygen atoms. Total C_xH_y subcategories include: aromatic hydrocarbons, and non-aromatic and
- 188 structurally unassigned species (referred to as C_xH_y in the text and figures). Higher molecular
- 189 weight species lacking an ion assignment are categorized as "other". In the case of possible
- 190 isomers, ions are categorized according to the species most likely to dominate based on previous
- 191 studies (McDonald et al., 2000; Schauer et al., 2001; Hedberg et al., 2002; Jordan and Seen,
- 192 2005; Pettersson et al., 2011; Evtyugina et al., 2014; Reda et al., 2015).
- 193 Oxygenated species contribute ~68-94% to the total primary NMOG mass, which has important
- 194 atmospheric implications due to the role of these compounds in photochemical reactions, for
- example by altering O₃ and peroxide formation (Mason et al., 2001; Shao et al., 2009).

- 196 McDonald et al. (2000) and Schauer et al. (2001) previously observed the dominance of
- 197 oxygenated NMOGs during residential burning of other wood types, whereas Evtyugina et al.
- 198 (2014) found that benzene and benzene derivatives contributed 59% to the total measured
- 199 NMOGs, compared to only 26% from oxygenated compounds for residential burning of beech
- 200 wood in a woodstove. However, Evtyugina et al. (2014), as well as McDonald et al. (2000) and
- 201 Schauer et al. (2001), did not include emissions from all lower molecular weight NMOGs, such
- 202 as acetic acid. Oxygenated NMOGs are also reported as a large fraction of NMOGs emitted
- 203 during open burning of many biomass fuels (Gilman et al., 2015; Stockwell et al., 2015).
- Acids are the most abundant subclass of species in all experiments with an average EF of
- 205 2000±2000 mg kg⁻¹ and acetic acid ($[C_2H_4O_2+H]^+$ at nominal m/z 61) is the most highly emitted
- 206 compound in all experiments. In addition to acetic acid, $[C_2H_4O_2+H]^+$ can correspond to
- 207 glycolaldehyde, however, Stockwell et al. (2015) found that acetic acid contributes ~75-93% to
- 208 [C₂H₄O₂+H]⁺ during open burning of black spruce (*Picea mariana*) and ponderosa pine (*Pinus*

209 ponderosa) and thus, it is expected that this ion is also largely attributable to acetic acid in the

- 210 current study. Acetic acid and formic acid ($[CH_2O_2+H]^+$ at nominal m/z 47) are the most
- abundant carboxylic acids in the atmosphere and are important contributors to atmospheric
- 212 acidity (Chebbi and Carlier, 1996). However, the sources of these acids are poorly understood
- 213 (Paulot et al., 2011) and data on their EFs from residential wood combustion are relatively
- 214 unknown. The high acetic acid EFs found here indicate that residential wood combustion can be
- 215 an important local source of this acid. Interestingly, the enhancement of acetic acid ($\Delta C_2 H_4 O_2$)
- 216 over background levels relative to CO enhancement (Δ CO) in the current study ranges from ~6
- 217 to 80 pptv ppbv⁻¹ (Table 1), which is much higher than the average 0.58 pptv ppbv⁻¹ (sum of gas
- and aerosol phase) measured in an Alpine valley heavily impacted by residential wood

- 219 combustion in winter (Gaeggeler et al., 2008). Further work is needed to investigate the source
- 220 of this discrepancy, as limited ambient measurements are available from regions heavily
- 221 impacted by residential wood combustion. However, it is possible that the ambient
- 222 measurements were dominated by emissions produced during poor burning conditions (e.g.,
- starting phase) where CO EFs are expected to be higher than during the stable burning phase
- 224 investigated in the current study.
- The sum of oxygenated and non-oxygenated aromatic compounds contribute ~7-30% (800±300
- 226 mg kg⁻¹) to the total primary NMOG mass with benzene ($[C_6H_6+H]^+$ at nominal m/z 79), phenol
- 227 $([C_6H_6O+H]^+ \text{ at nominal } m/z \text{ 95})$, and naphthalene $([C_{10}H_8+H]^+ \text{ at nominal } m/z \text{ 129})$ as the three
- 228 most dominant species. Oxidation products of aromatic species are the largest contributors to
- 229 residential wood combustion SOA in this study (Bruns et al., 2016) and both aromatic and
- 230 related oxidation products are of interest due to their particularly deleterious effects on health (Fu
- et al., 2012).
- For the other functional group categories, carbonyl and alcohols contribute ~8-12% (600±600
- 233 mg kg⁻¹) and ~3-5% (300 ± 300 mg kg⁻¹), respectively, to the total NMOG mass. In general, the
- most highly emitted carbonyl compound is acetaldehyde $([C_2H_4O+H]^+ \text{ at nominal } m/z \text{ 45}).$
- 235 Methanol ($[CH_3OH+H]^+$ at nominal m/z 33) is the most highly emitted alcohol, although other
- 236 acyclic alcohols can undergo extensive fragmentation in the mass spectrometer. Furans are only
- a minor contributor to the total primary NMOG mass, contributing \sim 3-5% (300±300 mg kg⁻¹),
- 238 but are of potential interest as several furans were recently identified as SOA precursors (Gómez
- Alvarez et al., 2009) and possible open biomass burning markers (Gilman et al., 2015).
- 240 **3.2 Burn variability**

241	Although the same compounds are emitted during all burns, there is variability in EFs between
242	experiments despite efforts to replicate burns as closely as possible and the fact that the MCE for
243	each experiment falls within a narrow range (0.974-0.978) (Table 1). Experiments 2 and 3 show
244	marked differences in total NMOG EFs and NMOG composition compared to experiments 1, 4
245	and 5. For example, the total NMOG EF is ~9 times higher in experiment 2 compared to
246	experiment 5 (Table 2). Acetic acid EFs vary by a factor of ~15 between burns, with high
247	emissions in experiments 2 and 3 relative to experiments 1, 4 and 5. The total emission of
248	oxygenated species also correlates with acetic acid emissions, with total oxygenated EFs
249	considerably higher in experiments 2 and 3 than in experiments 1, 4 and 5. In contrast, aromatic
250	hydrocarbons and C_xH_y EFs show no correlation with total oxygenated species or acetic acid
251	EFs. Interestingly, differences in black carbon EFs, primary organic aerosol EFs and primary
252	organic aerosol mass to black carbon ratios are also not observed between these two groupings of
253	experiments (2, 3 and 1, 4, 5), as presented previously (Bruns et al., 2016). Enhancements in the
254	average EF for the different functional groups in experiments 2 and 3 relative to experiments 1, 4
255	and 5 are shown in Figure 2.
256	The differences in EFs due to inter-burn variability illustrate the difficulty in constraining EFs
257	from residential wood combustion. Further work to constrain the possible range of EFs

258 generated under different conditions is critical for improving model inputs. EFs are also

259 dependent on factors such as appliance type and fuel loading and further work is needed to

260 characterize the emissions and the evolution of these emissions with aging generated from

261 burning of different wood types and under different burn parameters.

262 **3.3 Biomass burning tracers**

263	Individual compounds emitted exclusively or in large quantities during biomass burning are of
264	interest for source apportionment and compounds contributing to SOA formation are of
265	particular interest for climate and health (Figure 3). Acetonitrile is used as an ambient gas-phase
266	marker for open biomass burning (de Gouw et al., 2003; Singh et al., 2003). In the current
267	experiments, acetonitrile EFs are relatively low (3.5±0.3 mg kg ⁻¹) compared to open biomass
268	burning (~20-1000 mg kg ⁻¹) (Yokelson et al., 2008; Yokelson et al., 2009; Akagi et al., 2013;
269	Stockwell et al., 2015), likely due to different burn conditions (e.g., oxygen availability). The
270	enhancements of acetonitrile over background levels relative to CO enhancement,
271	$\Delta CH_3 CN/\Delta CO$, are ~0.08-0.1 pptv ppbv ⁻¹ (Table 1). This is slightly lower than the only
272	previously published residential wood combustion measurements (0.1 to 0.8 pptv ppbv ⁻¹)
273	(Grieshop et al., 2009a), but is much lower than $\Delta CH_3CN/\Delta CO$ measurements in ambient air
274	masses impacted by open biomass burning (~1-2 pptv ppbv ⁻¹) (Holzinger et al., 1999; Andreae
275	and Merlet, 2001; Christian et al., 2003; de Gouw et al., 2003; Jost et al., 2003; Holzinger et al.,
276	2005; de Gouw et al., 2006; Warneke et al., 2006; Yokelson et al., 2008; de Gouw et al., 2009;
277	Yokelson et al., 2009; Aiken et al., 2010; Akagi et al., 2013). However, $\Delta CH_3CN/\Delta CO$ during
278	open burning has been shown to depend strongly on fuel type; Stockwell et al. (2015) observed
279	$\Delta CH_3 CN/\Delta CO$ values from 0.0060-7.1 pptv ppbv ⁻¹ for individual open burns of different
280	biomass types. Further work is needed to investigate CH ₃ CN emissions from residential burning
281	of other wood types, as well as emissions during other burning phase (e.g., smoldering).
282	However, these low enhancements may be difficult to differentiate from ambient background
283	levels, making acetonitrile a poor marker for residential wood combustion.
284	The interference from isobaric compounds when quantifying acetonitrile using a PTR-MS is an

285 important consideration when high resolution data are not available. Previously, several studies

286	have determined this interference is minimal during open biomass burning (de Gouw et al., 2003;
287	Warneke et al., 2003; Christian et al., 2004; Warneke et al., 2011). Recently, Dunne et al. (2012)
288	quantified interferences with acetonitrile measurements in polluted urban air using a quadrupole
289	PTR-MS and found contributions of 5-41% to m/z 42 from non-acetonitrile ions including:
290	$[C_3H_6]^+$ and the ¹³ C isotope contribution from $[C_3H_5]^+$. In the current study, in addition to
291	contributions from $[C_3H_6]^+$ and the isotopic contribution from $[C_3H_5]^+$, ~30-50% of the total
292	signal at m/z 42 is due to $[C_2H_2O]^+$, which is presumably a fragment from higher molecular
293	weight species. The total contribution to m/z 42 from species besides acetonitrile is ~70-85%.
294	Although an investigation into the effects of the PTR-MS operating conditions (e.g., $[O_2]^+$ signal
295	from ion source, E/N affecting fragmentation) is outside the scope of the current study, the
296	possibility of considerable non-acetonitrile signal at m/z 42 should be taken into consideration
297	when using nominal mass PTR-MS data to quantify acetonitrile from residential wood
298	combustion.
299	Methanol is also used to identify air masses influenced by open biomass burning and
300	enhancement over background levels relative to CO enhancement ($\Delta CH_3OH/\Delta CO$) is typically
301	~1-80 pptv ppbv ⁻¹ in ambient and laboratory measurements of fresh open biomass burning
302	emissions (Holzinger et al., 1999; Goode et al., 2000; Andreae and Merlet, 2001; Christian et al.,
303	2003; Yokelson et al., 2003; Singh et al., 2004; Tabazadeh et al., 2004; Holzinger et al., 2005; de
304	Gouw et al., 2006; Gaeggeler et al., 2008; Yokelson et al., 2008; Yokelson et al., 2009; Akagi et
305	al., 2013; Stockwell et al., 2015; Müller et al., 2016). Here, we find similar values ranging from
306	~2-20 pptv ppbv ⁻¹ (Table 1), in agreement with Gaeggeler et al. (2008) who measured a
307	$\Delta CH_3 OH/\Delta CO$ value of 2.16 pptv ppbv ⁻¹ in an Alpine valley heavily impacted by residential
308	wood combustion emissions in winter.

309 3.4 Chamber studies of NMOG aging

310 Previous investigations of aged residential wood combustion emissions have largely focused on 311 the evolution of the aerosol phase (Grieshop et al., 2009a; Grieshop et al., 2009b; Hennigan et 312 al., 2010; Heringa et al., 2011; Bruns et al., 2015a; Bruns et al., 2015b; Bruns et al., 2016) and 313 little is known about the evolution of the gas phase. The evolution of the NMOG functional 314 group categories with increasing OH exposure is shown in Figure 4. Figure 5 shows the absolute 315 change in mass spectral signal between the aged and primary NMOG quantities. Although an 316 increase in NMOG mass could be expected with aging due to oxygenation, total NMOG mass decreases by \sim 5-30% at an OH exposure of (4.6-5.5)×10⁷ molec cm⁻³ h relative to the primary 317 emissions in experiments 1-4, likely due to the conversion of species from the gas to particle 318 319 phase, the mass of which increased considerably with aging (Bruns et al., 2016), and the 320 formation of gas-phase species not quantified here (e.g., formaldehyde). The total NMOG mass increases slightly, by ~5%, in experiment 5. Quantities of individual NMOGs and NMOG 321 functional group categories after reaching an OH exposure of $(4.6-5.5) \times 10^7$ molec cm⁻³ h are 322 323 presented in Table S2. 324 Subcategories of oxygenated species behave differently with aging. For example, total quantities

325 (mg kg⁻¹) of oxygenated aromatic species decrease by factors of ~7-15 and furan quantities

326 decrease by factors of ~4-9, whereas all other oxygenated subcategories, as well as N-containing

327 species, remain within a factor of 2 of primary values at an OH exposure of $(4.6-5.5) \times 10^7$ molec

328 cm⁻³ h. Aromatic hydrocarbons and C_xH_y quantities decrease with aging by factors of ~1.5-3.

329 The large decreases in oxygenated aromatic species and furans illustrate the highly reactive

330 nature of these species with respect to OH. The evolution of the bulk NMOG elemental

331 composition during aging is shown in Figure S1 in the Supplement.

332	In all experiments, formic acid quantities increases considerably with aging (by factors of ~5-
333	50), as does $[C_4H_2O_3+H]^+$ at nominal m/z 99 (by factors of ~2-3), which likely corresponds to
334	maleic anhydride, both of which are formed during the oxidation of aromatic species among
335	other compounds (Bandow et al., 1985; Sato et al., 2007; Praplan et al., 2014). However, the
336	fragment resulting from the loss of water from maleic acid cannot be distinguished from maleic
337	anhydride using the PTR-ToF-MS. Formic acid is underestimated in models, likely due to
338	missing secondary sources (Paulot et al., 2011) and these results indicate that aging of residential
339	wood combustion emissions can result in considerable secondary formic acid production. The
340	signal at m/z 149, corresponding to $[C_8H_4O_3+H]^+$, increases by factors of ~2-7 with aging. This
341	ion likely corresponds to phthalic anhydride, which is a known naphthalene oxidation product
342	(Chan et al., 2009).

343 Acetic acid formation has been observed in some ambient, open biomass burning plumes with 344 aging (Goode et al., 2000; Hobbs et al., 2003; Yokelson et al., 2003), whereas not in others (de 345 Gouw et al., 2006) and a doubling of m/z 61, likely dominated by acetic acid, was observed 346 during aging of residential burning emissions in a previous laboratory study (Grieshop et al., 347 2009a). In the current study, no increase in the average acetic acid concentration relative to 348 CO_(g) is observed (Table 1). Note that this implies production of secondary acetic acid that compensates for the expected consumption of ~8-10% of primary acetic acid by reaction with 349 OH at an OH exposure of $(4.5-5.5) \times 10^7$ molec cm⁻³ h. These results indicate that acetic acid 350 351 from residential burning of beech wood is dominated by primary emissions of this species (Table 352 1). As with acetic acid, there are discrepancies in methanol behavior as open biomass burning 353 plumes undergo aging (Goode et al., 2000; Yokelson et al., 2003; Tabazadeh et al., 2004; 354 Holzinger et al., 2005; de Gouw et al., 2006; Akagi et al., 2013). As described by Akagi et al.

355	(2013), methanol enhancement has been hypothesized to correlate with terpene concentration
356	and here, methanol remains within ~1-20% of the primary value after exposure to $(4.5-5.5) \times 10^7$
357	molec cm ⁻³ h OH (Table 1), which is expected based on the reaction with OH (Overend and
358	Paraskevopoulos, 1978) and the low terpene concentrations.
359	We have previously identified the compounds contributing to the majority of the SOA formed
360	during these experiments (Bruns et al., 2016). Figure S2 shows the observed decay of the largest
361	SOA precursors during aging in the chamber compared to the expected decay based on the OH
362	concentration in the chamber and the reaction rate with respect to OH. There is good agreement
363	between the observed and calculated decay for each compound which supports the structural
364	assignment of each ion.
365	As described above, the overall primary emission profiles, as well as total NMOG emissions,
366	vary considerably for experiments 2 and 3 compared to experiments 1, 4 and 5, with
367	considerably higher total NMOG emissions in experiments 2 and 3. To determine the impact of
368	the high NMOG emission experiments (2 and 3) compared to the lower NMOG emission
369	experiments (1, 4 and 5) on SOA formation potential, individual SOA precursors with published
370	SOA yields are investigated (Figure 3). The SOA formation potential for each of these 18
371	compounds is determined as the product of the primary EF and the best estimate SOA yield
372	determined from the literature, as determined previously (Bruns et al., 2016). The total SOA
373	formation potential for each experiment is taken as the sum of the individual SOA formation
374	potentials. Interestingly, the SOA formation potential is similar in all experiments and the
375	average enhancement of SOA formation potential in experiments 2 and 3 compared to the
376	average of experiments 1, 4 and 5 is insignificant (Figure 2), despite the considerably different
377	total NMOG EFs.

378 4 Conclusions

379	This study is the first detailed characterization of primary NMOGs from residential wood
380	combustion using a PTR-ToF-MS and the first investigation of the evolution of the majority of
381	these NMOGs with aging. Differences in EFs and profiles between residential burning and open
382	burning can be considerable and these results illustrate the importance of considering these
383	emission sources individually. While total emissions from open burning are much larger than
384	from residential burning, the societal relevance of residential wood burning emissions is
385	nontrivial. A large fraction of open biomass burning derives from wildfires in sparsely
386	populated regions (Ito and Penner, 2004), whereas residential wood combustion has been shown
387	to be a major fraction of wintertime submicron organic aerosol in densely populated
388	communities (Glasius et al., 2006; Krecl et al., 2008; Gonçalves et al., 2012; Guofeng et al.,
389	2012; Crippa et al., 2013; Herich et al., 2014; Tao et al., 2014; Paraskevopoulou et al., 2015).
390	Interestingly, MCE does not completely capture inter-burn variability, which is driven by
391	differences in oxygenated content. This work clearly shows that measurements of total NMOGs
392	or total hydrocarbon measurements are insufficient for estimating SOA formation potential from
393	residential wood combustion. While this work characterizes the stable burning of beech wood in
394	a modern woodstove, the composition and quantities of wood combustion emissions are highly
395	dependent on many factors and further work is needed to characterize the emissions and the
396	evolution of these emissions with aging generated from burning of different wood types and
397	under different burn parameters.

398 Acknowledgements

- 399 The research leading to these results received funding from the European Community's Seventh
- 400 Framework Programme (FP7/2007-2013) under grant agreement no. 290605 (PSI-FELLOW),
- 401 from the Competence Center Environment and Sustainability (CCES) (project OPTIWARES)
- 402 and from the Swiss National Science Foundation (WOOSHI grant 140590 and starting grant
- 403 BSSGI0_155846). We are grateful to René Richter for technical assistance and to Mike Cubison
- 404 for analysis support.

405 **References**

- 406 Aiken, A.C., de Foy, B., Wiedinmyer, C., DeCarlo, P.F., Ulbrich, I.M., Wehrli, M.N., Szidat, S.,
- 407 Prevot, A.S.H., Noda, J., Wacker, L., Volkamer, R., Fortner, E., Wang, J., Laskin, A.,
- 408 Shutthanandan, V., Zheng, J., Zhang, R., Paredes-Miranda, G., Arnott, W.P., Molina, L.T., Sosa,
- 409 G., Querol, X. and Jimenez, J.L.: Mexico city aerosol analysis during MILAGRO using high
- 410 resolution aerosol mass spectrometry at the urban supersite (T0) Part 2: Analysis of the
- biomass burning contribution and the non-fossil carbon fraction, Atmos. Chem. Phys. 10, 53155341, 2010.
- 413
- 414 Akagi, S.K., Yokelson, R.J., Burling, I.R., Meinardi, S., Simpson, I., Blake, D.R., McMeeking,
- 415 G.R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D.W.T.,
- 416 Johnson, T.J. and Weise, D.R.: Measurements of reactive trace gases and variable O₃ formation
- rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys. 13, 1141-1165,
- 418 2013.

- Andreae, M.O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning,
 Global Biogeochem. Cy. 15, 955-966, 2001.
- 422
- 423 Baasandorj, M., Millet, D.B., Hu, L., Mitroo, D. and Williams, B.J.: Measuring acetic and formic
- 424 acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and
- 425 quantifying interferences, Atmos. Meas. Tech. 8, 1303-1321, 2015.
- 426
- 427 Bandow, H., Washida, N. and Akimoto, H.: Ring-cleavage reactions of aromatic hydrocarbons
- studied by FT-IR spectroscopy. I. Photooxidation of toluene and benzene in the NO_x-Air System,
 B. Chem. Soc. Jpn. 58, 2531-2540, 1985.
- 430
- 431 Barmet, P., Dommen, J., DeCarlo, P.F., Tritscher, T., Praplan, A.P., Platt, S.M., Prévôt, A.S.H.,
- 432 Donahue, N.M. and Baltensperger, U.: OH clock determination by proton transfer reaction mass
- 433 spectrometry at an environmental chamber, Atmos. Meas. Tech. 5, 647-656, 2012.

- 434
- 435 Bølling, A.K., Pagels, J., Yttri, K.E., Barregard, L., Sallsten, G., Schwarze, P.E. and Boman, C.:
- 436 Health effects of residential wood smoke particles: the importance of combustion conditions and
- 437 physicochemical particle properties, Part. Fibre Toxicol. 6, doi:10.1186/1743-8977-1186-1129,
- 438 2009.

439

- 440 Bruns, E.A., Krapf, M., Orasche, J., Huang, Y., Zimmermann, R., Drinovec, L., Močnik, G., El
- 441 Haddad, I., Slowik, J.G., Dommen, J., Baltensperger, U. and Prévôt, A.S.H.: Characterization of
- 442 primary and secondary wood combustion products generated under different burner loads,
- 443 Atmos. Chem. Phys. 15, 2825-2841, 2015a.

444

- 445 Bruns, E.A., El Haddad, I., Keller, A., Klein, F., Kumar, N.K., Pieber, S.M., Corbin, J.C.,
- 446 Slowik, J.G., Brune, W.H., Baltensperger, U. and Prévôt, A.S.H.: Inter-comparison of laboratory
- 447 smog chamber and flow reactor systems on organic aerosol yield and composition, Atmos. Meas.
- 448 Tech. 8, 2315-2332, 2015b.

449

- 450 Bruns, E.A., El Haddad, I., Slowik, J.G., Kilic, D., Klein, F., Baltensperger, U. and Prévôt,
- 451 A.S.H.: Identification of significant precursor gases of secondary organic aerosols from
- 452 residential wood combustion, Sci. Rep. 6, doi: 10.1038/srep27881, 2016.

453

- 454 Buhr, K., van Ruth, S. and Delahunty, C.: Analysis of volatile flavour compounds by Proton
- 455 Transfer Reaction-Mass Spectrometry: fragmentation patterns and discrimination between
- 456 isobaric and isomeric compounds, Int. J. Mass. Spectrom. 221, 1-7, 2002.
- 457
- 458 Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P.M., Soukoulis, C., Aprea, E., Märk,
- 459 T.D., Gasperi, F. and Biasioli, F.: On quantitative determination of volatile organic compound
- 460 concentrations using proton transfer reaction time-of-flight mass spectrometry, Environ. Sci.
- 461 Technol. 46, 2283-2290, 2012.

462

- Chan, A.W.H., Kautzman, K.E., Chhabra, P.S., Surratt, J.D., Chan, M.N., Crounse, J.D., Kürten,
 A., Wennberg, P.O., Flagan, R.C. and Seinfeld, J.H.: Secondary organic aerosol formation from
- 464 A., weinberg, F.O., Flagan, K.C. and Sennerd, J.H.: Secondary organic aerosof formation from 465 photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate
- 466 volatility organic compounds (IVOCs), Atmos. Chem. Phys. 9, 3049-3060, 2009.

467

- 468 Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks:
- 469 A review, Atmos. Environ. 30, 4233-4249, 1996.

- 471 Christian, T.J., Kleiss, B., Yokelson, R.J., Holzinger, R., Crutzen, P.J., Hao, W.M., Saharjo, B.H.
- and Ward, D.E.: Comprehensive laboratory measurements of biomass-burning emissions: 1.
- 473 Emissions from Indonesian, African, and other fuels, J. Geophys. Res.-Atmos. 108,
- 474 doi:10.1029/2003JD003704, 2003.

475

- 476 Christian, T.J., Kleiss, B., Yokelson, R.J., Holzinger, R., Crutzen, P.J., Hao, W.M., Shirai, T. and
- 477 Blake, D.R.: Comprehensive laboratory measurements of biomass-burning emissions: 2. First
- intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD, J. Geophys. Res.-Atmos.
- 479 109, doi:10.1029/2003JD003874, 2004.

480

- 481 Crippa, M., DeCarlo, P.F., Slowik, J.G., Mohr, C., Heringa, M.F., Chirico, R., Poulain, L.,
- 482 Freutel, F., Sciare, J., Cozic, J., Di Marco, C.F., Elsasser, M., Nicolas, J.B., Marchand, N., Abidi,
- 483 E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R.,
- 484 Jaffrezo, J.L., Prévôt, A.S.H. and Baltensperger, U.: Wintertime aerosol chemical composition
- and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem.
- 486 Phys. 13, 961-981, 2013.

487

- 488 de Gouw, J.A., Warneke, C., Parrish, D.D., Holloway, J.S., Trainer, M. and Fehsenfeld, F.C.:
- Emission sources and ocean uptake of acetonitrile (CH₃CN) in the atmosphere, J. Geophys. Res. Atmos. 108, doi:10.1029/2002JD002897, 2003.
- 491
- de Gouw, J.A., Warneke, C., Stohl, A., Wollny, A.G., Brock, C.A., Cooper, O.R., Holloway,
- 493 J.S., Trainer, M., Fehsenfeld, F.C., Atlas, E.L., Donnelly, S.G., Stroud, V. and Lueb, A.: Volatile
- 494 organic compounds composition of merged and aged forest fire plumes from Alaska and western
- 495 Canada, J. Geophys. Res.-Atmos. 111, doi:10.1029/2005JD006175, 2006.

496

- 497 de Gouw, J.A., Welsh-Bon, D., Warneke, C., Kuster, W.C., Alexander, L., Baker, A.K.,
- Beyersdorf, A.J., Blake, D.R., Canagaratna, M., Celada, A.T., Huey, L.G., Junkermann, W.,
- 499 Onasch, T.B., Salcido, A., Sjostedt, S.J., Sullivan, A.P., Tanner, D.J., Vargas, O., Weber, R.J.,
- 500 Worsnop, D.R., Yu, X.Y. and Zaveri, R.: Emission and chemistry of organic carbon in the gas
- and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO
- 502 study, Atmos. Chem. Phys. 9, 3425-3442, 2009.
- 503
- 504 Dunne, E., Galbally, I.E., Lawson, S. and Patti, A.: Interference in the PTR-MS measurement of 505 acetonitrile at m/z 42 in polluted urban air—A study using switchable reagent ion PTR-MS, Int.
- 506 J. Mass. Spectrom. 319–320, 40-47, 2012.

507

- 508 Evtyugina, M., Alves, C., Calvo, A., Nunes, T., Tarelho, L., Duarte, M., Prozil, S.O., Evtuguin,
 509 D.V. and Pio, C.: VOC emissions from residential combustion of Southern and mid-European
- 510 woods, Atmos. Environ. 83, 90-98, 2014.

- 512 Fu, P.P., Xia, Q., Sun, X. and Yu, H.: Phototoxicity and environmental transformation of
- 513 polycyclic aromatic hydrocarbons (PAHs)—light-induced reactive oxygen species, lipid
- 514 peroxidation, and DNA damage, J. Environ. Sci. Heal. C 30, 1-41, 2012.
- 515

Atmospheric Chemistry and Physics Discussions

- 516 Gaeggeler, K., Prevot, A.S.H., Dommen, J., Legreid, G., Reimann, S. and Baltensperger, U.:
- 517 Residential wood burning in an Alpine valley as a source for oxygenated volatile organic
- 518 compounds, hydrocarbons and organic acids, Atmos. Environ. 42, 8278-8287, 2008.
- 519
- 520 Gilman, J.B., Lerner, B.M., Kuster, W.C., Goldan, P.D., Warneke, C., Veres, P.R., Roberts, J.M.,
- 521 de Gouw, J.A., Burling, I.R. and Yokelson, R.J.: Biomass burning emissions and potential air
- 522 quality impacts of volatile organic compounds and other trace gases from fuels common in the
- 523 United States, Atmos. Chem. Phys. 15, 13915-13938, 2015.
- 524
- 525 Glasius, M., Ketzel, M., Wåhlin, P., Jensen, B., Mønster, J., Berkowicz, R. and Palmgren, F.:
- Impact of wood combustion on particle levels in a residential area in Denmark, Atmos. Environ.40, 7115-7124, 2006.

528

- 529 Gómez Alvarez, E., Borrás, E., Viidanoja, J. and Hjorth, J.: Unsaturated dicarbonyl products
- from the OH-initiated photo-oxidation of furan, 2-methylfuran and 3-methylfuran, Atmos.
- 531 Environ. 43, 1603-1612, 2009.

532

- Gonçalves, C., Alves, C. and Pio, C.: Inventory of fine particulate organic compound emissions
 from residential wood combustion in Portugal, Atmos. Environ. 50, 297-306, 2012.
- 535
- 536 Goode, J.G., Yokelson, R.J., Ward, D.E., Susott, R.A., Babbitt, R.E., Davies, M.A. and Hao,
- 537 W.M.: Measurements of excess O₃, CO₂, CO, CH₄, C₂H₄, C₂H₂, HCN, NO, NH₃, HCOOH,
- 538 CH₃COOH, HCHO, and CH₃OH in 1997 Alaskan biomass burning plumes by airborne Fourier
- transform infrared spectroscopy (AFTIR), J. Geophys. Res.-Atmos. 105, 22147-22166, 2000.

540

- 541 Grieshop, A.P., Logue, J.M., Donahue, N.M. and Robinson, A.L.: Laboratory investigation of
- 542 photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of 543 organic aerosol evolution, Atmos. Chem. Phys. 9, 1263-1277, 2009a.

544

- 545 Grieshop, A.P., Donahue, N.M. and Robinson, A.L.: Laboratory investigation of photochemical
- 546 oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data,
- 547 Atmos. Chem. Phys. 9, 2227-2240, 2009b.

548

- 549 Guofeng, S., Siye, W., Wen, W., Yanyan, Z., Yujia, M., Bin, W., Rong, W., Wei, L., Huizhong,
- 550 S., Ye, H., Yifeng, Y., Wei, W., Xilong, W., Xuejun, W. and Shu, T.: Emission factors, size
- distributions, and emission inventories of carbonaceous particulate matter from residential wood
- combustion in rural China, Environ. Sci. Technol. 46, 4207-4214, 2012.

Atmospheric Chemistry and Physics Discussions

- Hedberg, E., Kristensson, A., Ohlsson, M., Johansson, C., Johansson, P.-Å., Swietlicki, E.,
- 555 Vesely, V., Wideqvist, U. and Westerholm, R.: Chemical and physical characterization of
- emissions from birch wood combustion in a wood stove, Atmos. Environ. 36, 4823-4837, 2002.
- 557
- 558 Hennigan, C.J., Sullivan, A.P., Collett, J.L. and Robinson, A.L.: Levoglucosan stability in
- biomass burning particles exposed to hydroxyl radicals, Geophys. Res. Lett. 37,
- 560 doi:10.1029/2010GL043088, 2010.
- 561
- 562 Herich, H., Gianini, M.F.D., Piot, C., Močnik, G., Jaffrezo, J.L., Besombes, J.L., Prévôt, A.S.H.
- and Hueglin, C.: Overview of the impact of wood burning emissions on carbonaceous aerosols
- and PM in large parts of the Alpine region, Atmos. Environ. 89, 64-75, 2014.
- 565
- 566 Heringa, M.F., DeCarlo, P.F., Chirico, R., Tritscher, T., Dommen, J., Weingartner, E., Richter,
- 567 R., Wehrle, G., Prévôt, A.S.H. and Baltensperger, U.: Investigations of primary and secondary
- 568 particulate matter of different wood combustion appliances with a high-resolution time-of-flight
- aerosol mass spectrometer, Atmos. Chem. Phys. 11, 5945-5957, 2011.
- 570
- 571 Hobbs, P.V., Sinha, P., Yokelson, R.J., Christian, T.J., Blake, D.R., Gao, S., Kirchstetter, T.W.,
- 572 Novakov, T. and Pilewskie, P.: Evolution of gases and particles from a savanna fire in South
- 573 Africa, J. Geophys. Res.-Atmos. 108, doi:10.1029/2002JD002352, 2003.
- 574
- 575 Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D.H., Schade, G.
- and Crutzen, P.J.: Biomass burning as a source of formaldehyde, acetaldehyde, methanol,
- acetone, acetonitrile, and hydrogen cyanide, Geophys. Res. Lett. 26, 1161-1164, 1999.
- 578
- 579 Holzinger, R., Williams, J., Salisbury, G., Klüpfel, T., de Reus, M., Traub, M., Crutzen, P.J. and
- 580 Lelieveld, J.: Oxygenated compounds in aged biomass burning plumes over the Eastern
- 581 Mediterranean: evidence for strong secondary production of methanol and acetone, Atmos.
- 582 Chem. Phys. 5, 39-46, 2005.
- 583
- 584 Ito, A. and Penner, J.E.: Global estimates of biomass burning emissions based on satellite
- 585 imagery for the year 2000, J. Geophys. Res.-Atmos. 109, doi:10.1029/2003JD004423, 2004.
- 586
- 587 Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R.,
- 588 Sulzer, P. and Märk, T.D.: A high resolution and high sensitivity proton-transfer-reaction time-589 of-flight mass spectrometer (PTR-TOF-MS), Int. J. Mass. Spectrom. 286, 122-128, 2009.

590

Jordan, T.B. and Seen, A.J.: Effect of airflow setting on the organic composition of woodheater emissions, Environ. Sci. Technol. 39, 3601-3610, 2005.

593 594 595 596	Jost, C., Trentmann, J., Sprung, D., Andreae, M.O., McQuaid, J.B. and Barjat, H.: Trace gas chemistry in a young biomass burning plume over Namibia: Observations and model simulations, J. Geophys. ResAtmos. 108, doi:10.1029/2002JD002431, 2003.
597 598 599 600	Kistler, M., Schmidl, C., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., Bauer, H. and Puxbaum, H.: Odor, gaseous and PM ₁₀ emissions from small scale combustion of wood types indigenous to Central Europe, Atmos. Environ. 51, 86-93, 2012.
601 602 603 604	Krecl, P., Hedberg Larsson, E., Ström, J. and Johansson, C.: Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization, Atmos. Chem. Phys. 8, 3639-3653, 2008.
605 606 607	Kroll, J.H. and Seinfeld, J.H.: Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ. 42, 3593-3624, 2008.
608 609 610 611 612	Lindinger, W., Hansel, A. and Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, Int. J. Mass. Spectrom. 173, 191-241, 1998.
613 614 615 616 617	Mason, S.A., Field, R.J., Yokelson, R.J., Kochivar, M.A., Tinsley, M.R., Ward, D.E. and Hao, W.M.: Complex effects arising in smoke plume simulations due to inclusion of direct emissions of oxygenated organic species from biomass combustion, J. Geophys. ResAtmos. 106, 12527-12539, 2001.
618 619 620 621	McDonald, J.D., Zielinska, B., Fujita, E.M., Sagebiel, J.C., Chow, J.C. and Watson, J.G.: Fine particle and gaseous emission rates from residential wood combustion, Environ. Sci. Technol. 34, 2080-2091, 2000.
622 623 624 625	Midey, A.J., Williams, S., Miller, T.M. and Viggiano, A.A.: Reactions of O_2^+ , NO^+ and H_3O^+ with methylcyclohexane (C_7H_{14}) and cyclooctane (C_8H_{16}) from 298 to 700 K, Int. J. Mass. Spectrom. 222, 413-430, 2003.
626 627 628 629 630	Müller, M., Anderson, B.E., Beyersdorf, A.J., Crawford, J.H., Diskin, G.S., Eichler, P., Fried, A., Keutsch, F.N., Mikoviny, T., Thornhill, K.L., Walega, J.G., Weinheimer, A.J., Yang, M., Yokelson, R.J. and Wisthaler, A.: In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys. 16, 3813-3824, 2016.

- 632 Nozière, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius,
- 633 M., Grgić, I., Hamilton, J.F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C.J.,
- Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J.D.,
- 635 Szidat, S., Szmigielski, R. and Wisthaler, A.: The molecular identification of organic compounds
- 636 in the atmosphere: state of the art and challenges, Chem. Rev. 115, 3919-3983, 2015.
- 637
- Overend, R. and Paraskevopoulos, G.: Rates of hydroxyl radical reactions. 4. Reactions with
- methanol, ethanol, 1-propanol, and 2-propanol at 296 K, J. Phys. Chem. 82, 1329-1333, 1978.
- 640
- 641 Ozil, F., Tschamber, V., Haas, F. and Trouvé, G.: Efficiency of catalytic processes for the
- reduction of CO and VOC emissions from wood combustion in domestic fireplaces, Fuel
- 643 Process. Technol. 90, 1053-1061, 2009.

644

- 645 Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E. and Mihalopoulos, N.: Sources of
- atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens,
- 647 Greece, Sci. Total Environ. 527–528, 165-178, 2015.

648

- 649 Paulot, F., Wunch, D., Crounse, J.D., Toon, G.C., Millet, D.B., DeCarlo, P.F., Vigouroux, C.,
- 650 Deutscher, N.M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J.W., Warneke, C., de
- Gouw, J.A., Dunlea, E.J., De Mazière, M., Griffith, D.W.T., Bernath, P., Jimenez, J.L. and
- Wennberg, P.O.: Importance of secondary sources in the atmospheric budgets of formic and
- 653 acetic acids, Atmos. Chem. Phys. 11, 1989-2013, 2011.

654

- 655 Pettersson, E., Boman, C., Westerholm, R., Boström, D. and Nordin, A.: Stove performance and
- emission characteristics in residential wood log and pellet combustion, part 2: wood stove,
- 657 Energ. Fuel 25, 315-323, 2011.

658

- Pouli, A.E., Hatzinikolaou, D.G., Piperi, C., Stavridou, A., Psallidopoulos, M.C. and Stavrides,
 J.C.: The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on
- 661 lung epithelial cells, Free Radical Bio. Med. 34, 345-355, 2003.
- 662
- 663 Praplan, A.P., Hegyi-Gaeggeler, K., Barmet, P., Pfaffenberger, L., Dommen, J. and
- Baltensperger, U.: Online measurements of water-soluble organic acids in the gas and aerosol
- phase from the photooxidation of 1,3,5-trimethylbenzene, Atmos. Chem. Phys. 14, 8665-8677,2014.
- 000

- 668 Reda, A.A., Czech, H., Schnelle-Kreis, J., Sippula, O., Orasche, J., Weggler, B., Abbaszade, G.,
- 669 Arteaga-Salas, J.M., Kortelainen, M., Tissari, J., Jokiniemi, J., Streibel, T. and Zimmermann, R.:
- 670 Analysis of gas-phase carbonyl compounds in emissions from modern wood combustion
- appliances: influence of wood type and combustion appliance, Energ. Fuel 29, 3897-3907, 2015.

- 672
- 673 Sato, K., Hatakeyama, S. and Imamura, T.: Secondary organic aerosol formation during the
- 674 photooxidation of toluene: NO_x dependence of chemical composition, J. Phys. Chem. A 111,
- 9796-9808, 2007. 675

676

- 677 Schauer, J.J., Kleeman, M.J., Cass, G.R. and Simoneit, B.R.T.: Measurement of emissions from 678 air pollution sources. 3. C_1 - C_{29} organic compounds from fireplace combustion of wood, Environ.
- 679 Sci. Technol. 35, 1716-1728, 2001.

680

- 681 Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Ramirez-Santa Cruz, C.,
- 682 Handler, M., Peng, G., Bauer, H. and Puxbaum, H.: Particulate and gaseous emissions from
- 683 manually and automatically fired small scale combustion systems, Atmos. Environ. 45, 7443-684 7454, 2011.
- 685
- Shao, M., Lu, S., Liu, Y., Xie, X., Chang, C., Huang, S. and Chen, Z.: Volatile organic 686
- 687 compounds measured in summer in Beijing and their role in ground-level ozone formation, J. Geophys. Res.-Atmos. 114, doi:10.1029/2008JD010863, 2009. 688
- 689
- 690 Singh, H.B., Salas, L., Herlth, D., Kolyer, R., Czech, E., Viezee, W., Li, Q., Jacob, D.J., Blake,
- 691 D., Sachse, G., Harward, C.N., Fuelberg, H., Kiley, C.M., Zhao, Y. and Kondo, Y.: In situ
- 692 measurements of HCN and CH₃CN over the Pacific Ocean: Sources, sinks, and budgets, J.
- 693 Geophys. Res.-Atmos. 108, doi:10.1029/2002JD003006, 2003.

694

- 695 Singh, H.B., Salas, L.J., Chatfield, R.B., Czech, E., Fried, A., Walega, J., Evans, M.J., Field,
- 696 B.D., Jacob, D.J., Blake, D., Heikes, B., Talbot, R., Sachse, G., Crawford, J.H., Avery, M.A.,
- 697 Sandholm, S. and Fuelberg, H.: Analysis of the atmospheric distribution, sources, and sinks of
- 698 oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-
- 699 P, J. Geophys. Res.-Atmos. 109, doi:10.1029/2003JD003883, 2004.
- 700
- 701 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
- 702 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
- 703 Stocker, T.F., D. Qin, G.-K.P., M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex
- 704 and Midgley, P.M., Cambridge University Press, Cambridge, UK and New York, USA, 2013.

705

- 706 Stockwell, C.E., Veres, P.R., Williams, J. and Yokelson, R.J.: Characterization of biomass
- 707 burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution
- 708 proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys. 15, 845-865,
- 709 2015.

Atmospheric Chemistry and Physics Discussions

- 711 Tabazadeh, A., Yokelson, R.J., Singh, H.B., Hobbs, P.V., Crawford, J.H. and Iraci, L.T.:
- 712 Heterogeneous chemistry involving methanol in tropospheric clouds, Geophys. Res. Lett. 31,
- 713 doi:10.1029/2003GL018775, 2004.

714

- Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J. and Hsu, S.C.:
- PM_{2.5} pollution in a megacity of southwest China: source apportionment and implication, Atmos.
 Chem. Phys. 14, 8679-8699, 2014.

718

- 719 Warneke, C., de Gouw, J.A., Kuster, W.C., Goldan, P.D. and Fall, R.: Validation of atmospheric
- VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic
- 721 preseparation method, Environ. Sci. Technol. 37, 2494-2501, 2003.

722

- 723 Warneke, C., de Gouw, J.A., Stohl, A., Cooper, O.R., Goldan, P.D., Kuster, W.C., Holloway,
- J.S., Williams, E.J., Lerner, B.M., McKeen, S.A., Trainer, M., Fehsenfeld, F.C., Atlas, E.L.,
- 725 Donnelly, S.G., Stroud, V., Lueb, A. and Kato, S.: Biomass burning and anthropogenic sources
- of CO over New England in the summer 2004, J. Geophys. Res.-Atmos. 111,
- 727 doi:10.1029/2005JD006878, 2006.

728

- Warneke, C., Roberts, J.M., Veres, P., Gilman, J., Kuster, W.C., Burling, I., Yokelson, R. and de
 Gouw, J.A.: VOC identification and inter-comparison from laboratory biomass burning using
- 731 PTR-MS and PIT-MS, Int. J. Mass. Spectrom. 303, 6-14, 2011.
- 732
- 733 Yokelson, R.J., Bertschi, I.T., Christian, T.J., Hobbs, P.V., Ward, D.E. and Hao, W.M.: Trace
- gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by
- airborne Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res.-Atmos. 108,
- 736 doi:10.1029/2002JD002322, 2003.

737

- 738 Yokelson, R.J., Christian, T.J., Karl, T.G. and Guenther, A.: The tropical forest and fire
- emissions experiment: laboratory fire measurements and synthesis of campaign data, Atmos.
- 740 Chem. Phys. 8, 3509-3527, 2008.
- 741
- 742 Yokelson, R.J., Crounse, J.D., DeCarlo, P.F., Karl, T., Urbanski, S., Atlas, E., Campos, T.,
- 743 Shinozuka, Y., Kapustin, V., Clarke, A.D., Weinheimer, A., Knapp, D.J., Montzka, D.D.,
- Holloway, J., Weibring, P., Flocke, F., Zheng, W., Toohey, D., Wennberg, P.O., Wiedinmyer,
- 745 C., Mauldin, L., Fried, A., Richter, D., Walega, J., Jimenez, J.L., Adachi, K., Buseck, P.R., Hall,
- S.R. and Shetter, R.: Emissions from biomass burning in the Yucatan, Atmos. Chem. Phys. 9,
- 747 5785-5812, 2009.

748

Table 1. Modified combustion efficiencies, OH exposures of reported aged values (molec cm^{-3} h) and enhancement of select species relative to CO enhancement above background levels (pptv pphy⁻¹)

ppuv)						
parameter	experiment					average ^a
	1	2	3	4	5	
MCE	0.975	0.978	0.977	0.974	0.978	0.976 ± 0.002
OH exposure	4.5×10^{7}	5.5×10^{7}	5.3×10^{7}	5.2×10^{7}	4.7×10^{7}	-
$\Delta CH_3 CN_{primary}\!/\Delta CO$	0.079	0.11	0.099	0.077	0.082	0.09 ± 0.01
$\Delta CH_3 CN_{aged}/\Delta CO$	0.084	0.11	0.11	0.072	0.069	0.09 ± 0.02
$\Delta CH_3 OH_{primary} / \Delta CO$	3.4	21	11	2.4	1.5	8 ± 8
$\Delta CH_3 OH_{aged} / \Delta CO$	3.4	19	11	2.5	1.8	7±7
$\Delta C_2 H_4 O_{2 primary} / \Delta CO$	12	84	57	9.8	5.9	30±30
$\Delta C_2 H_4 O_{2aged} / \Delta CO$	12	68	48	9.4	6.5	30±30

^aUncertainties correspond to one sample standard deviation of the replicates.

Table 2. Primary emission factors of gas-phase species $(mg kg^{-1})^{a,b}$

species	monoisotoni	c structural assignment ^c	functional group	experiment	+				average ^d
species	m/7	e structural assignment	functional group	1	2	3	4	5	average
CO ₂				1780000	1781000	1777000	1772000	1784000	1779000 ±4000
CO				27000	26000	27000	30000	27000	28000±2000
CH_4				1800	1600	2000	2800	1500	1900±500
NMOG				2800	13000	9200	3200	1500	6000±5000
acid				750	5000	3500	700	340	2000±2000
O-containing				560	3400	2200	590	290	1000±1000
carbonyl				310	1500	960	270	170	600±600
oxygenated aromatic	с			230	780	520	270	140	400±300
alcohol				130	660	360	90	48	300±300
furan				93	680	410	95	51	300±300
O- and N-containing	g			120	81	210	120	91	100±20
C _x H _y				120	210	210	680	250	150±00 400+200
N containing	JII			320	30	490	23	230	400±200 30±10
other				140	390	310	160	94	200+100
[CH ₂ OH+H] ⁺	33.034	methanol	alcohol	110	660	360	87	47	300+300
$[C_2H_3N+H]^+$	42.034	acetonitrile	N-containing	3.4	3.4	4.1	3.6	3.2	3.5±0.3
$[C_3H_6+H]^+$	43.055	propene	$C_{x}H_{y}$	38	61	40	28	15	40±20
$[C_2H_4O+H]^+$	45.034	acetaldehyde	carbonyl	94	330	230	79	48	200±100
[CH ₂ O ₂ +H]+	47.013	formic acid	acid	9.9	96	100	31	4.2	50±50
$[C_2H_6O+H]^+$	47.050	ethanol	alcohol	16	BDL	3.3	2.5	BDL	4±7
$[C_4H_6+H]^+$	55.055	buta-1,3-diene	C_xH_y	14	38	33	14	5.7	20±10
$[C_3H_4O+H]^+$	57.034	prop-2-enal	carbonyl	45	160	120	45	25	80±60
$[C_2H_2O_2+H]^+$	59.013	oxaldehyde	carbonyl	BDL	BDL	BDL	1.3	BDL	0.3±0.6
$[C_3H_6O+H]^+$	59.050	propan-2-one	carbonyl	54	190	120	30	30	80±70
	61.000	propanal		7.10	1000	2400	670	2.10	2000 2000
$[C_2H_4O_2+H]^2$	61.029	acetic acid	acid	740	4900	3400	670	340	2000±2000
	60.024	giycolaidenyde	£	17	140	02	10	0.7	50.00
$[C_{4}H_{4}O+H]$	69.034	iconrene	luran C H	1/	140	82	19	9.7	30±00
[C5118+11]	09.070	cyclopentene	C _x H _y	5.4	12	9.4	2.0	1.1	312
$[C_4H_4O_+H]^+$	71.050	(E)-but-2-enal	carbonyl	25	120	72	19	14	50+40
[04100 11]	/11000	3-buten-2-one	earoonyr	20	120		.,		50-10
		2-methylprop-2-enal							
$[C_5H_{10}+H]^+$	71.086	(E)-/ (Z) -pent-2-ene	$C_x H_y$	2.7	5.3	4.0	2.0	0.86	3±2
		2-methylbut-1-ene	,						
		2-methylbut-2-ene							
		pent-1-ene							
		3-methylbut-1-ene							
$[C_{3}H_{4}O_{2}+H]^{+}$	73.029	2-oxopropanal	carbonyl	26	140	96	26	15	60±50
$[C_4H_8O+H]^+$	73.065	butan-2-one	carbonyl	7.2	44	24	5.2	4.2	20±20
		butanal							
	75.045	2-methylpropanal	O contribuir o	(2)	400	200	50	20	200.200
$[C_{3}H_{6}O_{2}+H]$	75.045	henzene	O-containing	02	490	300	30	28	200±200 200±100
[C ₆ n ₆ +n]	79.033	benzene	hydrocarbon	210	90	300	430	130	200±100
$[C_{*}H_{*}O_{+}H]^{+}$	83.050	2-methylfuran	furan	21	160	88	21	12	60+60
$[C_{H_0}O_{+}H]^+$	85.065	3-methyl-3-buten-2-one	carbonyl	10	69	39	87	54	30+30
$[C_{4}H_{12}+H]^{+}$	85.102	(E)-hex-2-ene	C _x H _y	BDL	2.2	1.6	0.60	BDL	1+1
[=0==12.5=]		2-methyl-pent-2-ene							
$[C_4H_6O_2+H]^+$	87.045	butane-2,3-dione	carbonyl	51	450	250	52	26	200±200
$[C_7H_8+H]^+$	93.070	toluene	aromatic	23	22	34	39	16	27±9
			hydrocarbon						
$[C_6H_6O+H]^+$	95.050	phenol	oxygenated	110	110	130	130	68	110±20
			aromatic						
$[C_5H_4O_2+H]^+$	97.029	furan-2-carbaldehyde	furan	40	270	180	40	21	100±100
$[C_6H_8O+H]^+$	97.065	2,4-/2,5-dimethylfuran	furan	11	86	48	11	5.5	30±30
$[C_4H_2O_3+H]^+$	99.008	maleic anhydride	O-containing	40	91	66	40	26	50±30
$[C_8H_8+H]$	105.070	styrene	aromatic	12	8.0	20	24	9.6	15±/
	107.050	banzaldabyda	nydrocarbon	18	14	23	27	11	18+7
[C7H6O+H]	107.050	benzaidenyde	aromatic	16	14	23	27	11	10±/
$[C_0H_{10}+H]^+$	107.086	m_/o_/n_vylene	aromatic	12	69	75	63	29	6+2
[08110+11]	107.000	ethylbenzene	hydrocarbon	4.2	0.7	1.5	0.5	2.)	0±2
$[C_7H_8O+H]^+$	109.065	<i>m-/o-/p-</i> cresol	oxygenated	24	71	48	25	14	40±20
C . /01		· · · · · ·	aromatic						
$[C_6H_6O_2+H]^+$	111.045	<i>m</i> -/ <i>o</i> -/ <i>p</i> -benzenediol	oxygenated	26	150	86	22	14	60±50
		2-methylfuraldehyde	aromatic						
$[C_9H_8+H]^+$	117.070	1 <i>H</i> -indene	aromatic	5.0	BDL	9.5	15	2.9	6±6
			hydrocarbon						
$[C_9H_{10}+H]^+$	119.086	2,3-dihydro-1H-indene	aromatic	2.3	2.8	3.9	3.3	1.3	3±1

			hydrocarbon						
$\left[C_8H_8O{+}H\right]^+$	121.065	1-phenylethanone 3-//-methylbenzaldehyde	oxygenated	8.3	14	13	8.8	4.6	10±4
${[C_9H_{12}\!\!+\!\!H]}^{\!+}$	121.102	<i>i</i> -propylbenzene <i>n</i> -propylbenzene	aromatic hydrocarbon	1.0	2.4	2.3	1.2	0.68	1.5±0.8
$\left[C_8H_{10}O{+}H\right]^+$	123.081	1,3,5-trimethylbenzene 2,4-/2,6-/3,5-dimethylphenol	oxygenated	4.7	36	18	4.9	3.0	10±10
$[C_7H_8O_2+H]^+$	125.060	2-methoxyphenol	oxygenated	9.2	110	55	12	4.9	40±50
$[C_6H_6O_3+H]^+$ $[C_{10}H_8+H]^+$	127.040 129.070	5-(hydroxymethyl)furan-2-carbaldehyde naphthalene	furan aromatic	4.4 42	29 20	17 80	4.9 100	2.7 33	10±10 60±30
$[C_8H_{10}O_2+H]^+$	139.076	2-methoxy-4-methylphenol	hydrocarbon oxygenated	3.2	59	29	6.2	1.8	20±20
$[C_{11}H_{10}+H]^+$	143.086	4-(2-hydroxyethyl)phenol 1-/2-methylnaphthalene	aromatic aromatic	4.0	2.3	5.7	7.5	3.3	5±2
$\left[C_{9}H_{6}O_{2}{+}H\right] ^{+}$	147.045	2,3-dihydroinden-1-one	oxygenated aromatic	11	13	13	11	6.0	11±3
$[C_{\circ}H_{4}O_{2}+H]^{+}$	149 024	phthalic anhdvride ^e	O-containing	16	31	25	16	83	19+9
$[C_8H_8O_3+H]^+$	153.055	4-hydroxy-3-methoxybenzaldehyde	oxygenated aromatic	3.8	27	15	3.7	1.4	10±10
$[C_{12}H_8+H]^+$	153.070	acenaphthylene	aromatic hydrocarbon	6.1	3.6	12	15	8.3	9±5
$[C_9H_{12}O_2{+}H]^+$	153.092	4-ethyl-2-methoxyphenol 1,2-dimethoxy-4-methylbenzene	oxygenated aromatic	1.4	30	14	3.2	BDL	10±10
$[C_8H_{10}O_3{+}H]^+$	155.071	2,6-dimethoxyphenol	oxygenated aromatic	2.2	73	35	7.8	1.0	20±30
$[C_{12}H_{10}+H]^+$	155.086	1,1'-biphenyl 1,2-dihydroacenaphthylene	aromatic hydrocarbon	3.1	BDL	4.3	6.1	2.9	3±2
$[C_{12}H_{12}+H]^+$	157.102	dimethylnaphthalene	aromatic hydrocarbon	1.3	3.0	3.2	2.2	1.2	2.2±0.9
$\left[C_{10}H_{12}O_{2}{+}H\right]^{+}$	165.092	2-methoxy-4-[(<i>E</i>)-prop-1-enyl]phenol 2-methoxy-4-prop-2-enylphenol	oxygenated aromatic	0.92	24	13	2.3	0.59	8±10
$\left[C_{9}H_{10}O_{3}\!\!+\!H\right] ^{+}$	167.071	2-inethoxy-4-{(Z)-prop-1-enyr)phenol 1-(4-hydroxy-3-methoxyphenyl)ethanone 2,5-dimethylbenzaldehyde 3.4-dimethoxybenzaldehyde	oxygenated aromatic	2.5	11	6.7	2.2	1.2	5±4
$\left[C_{13}H_{10}{+}H\right] ^{+}$	167.086	fluorene	aromatic hydrocarbon	BDL	BDL	1.0	2.5	2.0	1±1
$[C_{10}H_{14}O_2+H]^+)$	167.107	2-methoxy-4-propylphenol	oxygenated aromatic	0.88	7.6	4.4	1.1	BDL	3±3
$[C_9H_{12}O_3{+}H]^+$	169.086	2,6-dimethoxy-4-methylphenol	oxygenated aromatic	BDL	14	6.2	1.1	BDL	4±6
$\left[C_{14}H_{10}+H\right]^{+}$	179.086	phenanthrene anthracene	aromatic hydrocarbon	6.4	8.4	6.1	3.6	7.7	6±2
$\left[C_{13}H_8O{+}H\right]^+$	181.065	fluoren-9-one phenalen-1-one	oxygenated aromatic	2.7	4.0	2.7	1.2	1.9	2±1
$\left[C_{10}H_{12}O_{3}{+}H\right]^{+}$	181.086	1-(4-hydroxy-3-methoxyphenyl)propan-2- one	oxygenated aromatic	BDL	4.2	2.6	1.1	0.69	2±2
$\left[C_{9}H_{10}O_{4}{+}H\right] ^{+}$	183.066	3,4-dimethoxybenzoic acid 4-hvdroxy-3,5-dimethoxybenzaldehvde	oxygenated aromatic	1.1	BDL	1.4	1.1	1.0	0.9±0.5
$[C_{10}H_{14}O_3{+}H]^+$	183.102	4-ethyl-2,6-dimethoxyphenol	oxygenated aromatic	1.0	7.4	4.2	1.0	BDL	3±3
$\left[C_{15}H_{12}{+}H\right]^{+}$	193.102	1-/2-/3-/9-methylphenanthrene 2-methylanthracene	aromatic hydrocarbon	0.50	2.6	1.3	BDL	0.44	1±1
$[C_{11}H_{14}O_3{+}H]^+$	195.102	1,3-dimethoxy-2-prop-2-enoxybenzene 2,6-dimethoxy-4-[(Z)-prop-1-enyl]phenol	oxygenated aromatic	BDL	1.7	1.2	BDL	BDL	0.6±0.8
$\left[C_{16}H_{10}{+}H\right]^{+}$	203.086	fluoranthene	aromatic hydrocarbon	BDL	0.87	BDL	BDL	BDL	0.2±0.4

^aCO₂, CO and CH₄ are measured using cavity ring down spectroscopy and all other species are measured using the PTR-ToF-MS.

^bBDL indicates value is below the detection limit.

^cMultiple structural assignments for a given ion correspond to possible isomers.

^dUncertainties correspond to one sample standard deviation of the replicates.

^eStructural assignment based on known products produced during oxidation of aromatics

(Bandow et al., 1985; Chan et al., 2009; Praplan et al., 2014).

Figure 1. Mass spectra of primary emissions for experiments 1-5 (a-e) colored by functional group. (a-e) Labelled peaks correspond to $[C_2H_3O]^+$ (*m*/z 43, fragment from higher molecular weight compounds), $[C_2H_4O_2+H]^+$ (*m*/z 61, acetic acid), $[C_3H_6O_2+H]^+$ (*m*/z 75, methyl acetate), $[C_6H_6+H]^+$ (*m*/z 79, benzene), $[C_6H_6O+H]^+$ (*m*/z 95, phenol) and $[C_{10}H_8+H]^+$ (*m*/z 129, naphthalene). The bars in (f) correspond to the fractional contribution of each functional group to the total NMOG mass for each experiment and the average of all experiments. Error bars correspond to one sample standard deviation of the replicates. Legend in (b) applies to (a-f).

Figure 2. Enhancement (average value (mg kg⁻¹) of experiments 2 and 3 relative to the average value of experiments 1, 4 and 5) in each NMOG functional group category and for SOA formation potential. Total SOA formation potential is determined using the primary EF of each NMOG identified as a SOA precursor and literature SOA yields and assumes complete consumption of each NMOG with aging (see text for details). Error bars correspond to one sample standard deviation.

Figure 3. Geometric mean of the primary emission factors for gas-phase species of particular interest for SOA formation (solid bars and gray patterned bars) and identification of air masses influenced by biomass burning (black patterned bars). Colors and patterns corresponding to NMOGs contributing to SOA formation are consistent with Bruns et al. (2016). Error bars correspond to the sample geometric standard deviation of the replicates.

Figure 4. (a-e) Temporal evolution of gas-phase species categorized by functional group throughout aging in the smog chamber. Units on the y-axes are mass of each functional group (mg) per mass of wood consumed (kg).

Figure 5. Absolute difference of aged and primary mass spectra for experiments 1-5 (a-e), where peaks less than zero decrease during aging and peaks greater than zero increase during aging. Aged emissions correspond to an OH exposure of $(4.5-5.5)\times10^7$ molec cm⁻³ h. (a-e) Labelled peaks correspond to $[CH_2O_2+H]^+$ (*m*/z 47, formic acid), $[C_2H_4O_2+H]^+$ (*m*/z 61, acetic acid), $[C_6H_6+H]^+$ (*m*/z 79, benzene), $[C_6H_6O+H]^+$ (*m*/z 95, phenol), $[C_5H_4O_2+H]^+$ (*m*/z 97, furan-2-carbaldehyde), $[C_4H_2O_3+H]^+$ (*m*/z 99, maleic anhydride), $[C_{10}H_8+H]^+$ (*m*/z 129, naphthalene) and $[C_8H_4O_3+H]^+$ (*m*/z 149, phthalic anhydride). The bars in (f) correspond to the fractional contribution of each category to the total NMOG EF at an OH exposure of $(4.5-5.5)\times10^7$ molec cm⁻³ h for each experiment and the average of all experiments. Error bars correspond to one sample standard deviation of the replicates.